蜜桃传播传媒|欧美精品久久久久久久一区二区|91干炮视频|国产高清自拍一区|麻豆映画在线观看视频传媒www|巨乳美乳影院|日日干夜夜拍|177.sk 163.sk黑料不打烊|小视频福利|91爱看视频,广州爱豆文化传媒,人人爱人人看,91传媒制片厂苹果下载

MENU

新聞中心

當前位置: 首頁» 新聞中心» 科研進展

Nature Communications | 錢前/商連光團隊基于7765份水稻種質(zhì)資源深度挖掘產(chǎn)量新基因,助力高產(chǎn)分子設(shè)計育種

2025-04-07 04:48:00來源:

【字體:

  

近日,中國農(nóng)業(yè)科學院深圳農(nóng)業(yè)基因組研究所(嶺南現(xiàn)代農(nóng)業(yè)科學與技術(shù)廣東省實驗室深圳分中心)聯(lián)合山西農(nóng)業(yè)大學、崖州灣國家實驗室等單位在《自然通訊(Nature Communications)》上在線發(fā)表了題為“GWAS meta-analysis using a graph-based pan-genome enhanced gene mining efficiency for agronomic traits in rice”的研究論文。該研究通過整合7765份水稻種質(zhì)資源,基于圖形泛基因組的meta-GWAS分析,顯著提高了水稻種質(zhì)資源群體中挖掘關(guān)鍵產(chǎn)量相關(guān)基因的效率。這一成果不僅為大規(guī)模水稻種質(zhì)資源利用提供了新的工具和思路,也為水稻高產(chǎn)分子設(shè)計育種提供了新的重要基因資源。



豐富的水稻種質(zhì)資源中積累了大量可以用來提高產(chǎn)量性狀的優(yōu)異自然變異。產(chǎn)量性狀是復(fù)雜變異控制的復(fù)雜性狀。目前對種質(zhì)資源遺傳變異尤其是復(fù)雜變異的解析尚不夠深入,這一現(xiàn)狀限制了產(chǎn)量性狀相關(guān)基因的深入挖掘,進而影響了其在育種中的應(yīng)用。圍繞該科學問題,團隊前期開展了深入系統(tǒng)的工作,包括:基于全球水稻核心種質(zhì)資源,構(gòu)建了基因組充分注釋的水稻圖形泛基因組(Shang et al., Cell Research, 2022)和日本晴完整參考基因組(Shang et al., Molecular Plant, 2023),提高了復(fù)雜變異鑒定的準確度。基于泛基因組并深入解析了轉(zhuǎn)座子變異(Li et al., National Science Review, 2024)、倒位變異(He et al., Science Bulletin, 2024)和著絲粒序列變異(Lv et al., Journal of Integrative Plant Biology, 2023)等復(fù)雜結(jié)構(gòu)變異對產(chǎn)量相關(guān)基因的影響,挖掘到了qTGW1.2a等多個產(chǎn)量新基因,為水稻種質(zhì)資源挖掘和功能基因組研究提供了新平臺。同時,突破了二等位GWAS挖掘產(chǎn)量基因傳統(tǒng)研究方法的局限性,基于復(fù)等位變異GWAS挖掘到產(chǎn)量新基因TRGW6,以遺傳學實驗證明了復(fù)等位變異對產(chǎn)量性狀有獨立于二等位變異的劑量調(diào)控效應(yīng),并實現(xiàn)了產(chǎn)量性狀的精準個性化設(shè)計(He et al., Nature Communications, 2024)。未被充分挖掘的產(chǎn)量稀有變異可能攜帶獨特的遺傳信息,在水稻高產(chǎn)性狀調(diào)控中發(fā)揮重要作用。常見變異僅能解釋部分遺傳力,稀有等位基因的協(xié)同作用可能成為找回“遺傳力缺失”的關(guān)鍵。團隊前期基于10548份水稻資源進行了包含結(jié)構(gòu)變異的稀有變異挖掘,并深入挖掘了產(chǎn)量等性狀多個基因的稀有優(yōu)異等位基因型,為水稻高產(chǎn)優(yōu)異自然變異挖掘提供了新的重要資源(Wang et al., Nucleic Acids Research, 2023)。


在本研究中,為了進一步克服傳統(tǒng)GWAS方法對群體結(jié)構(gòu)和樣本量的敏感性,以及在低頻變異分析和微效基因挖掘方面的局限性,進而整合更多大規(guī)模數(shù)據(jù)資源,實現(xiàn)對超大規(guī)模群體的高效基因挖掘。研究團隊采用meta-GWAS策略,整合來自6個不同種質(zhì)資源群體的7765份水稻種質(zhì)資源基因型和表型數(shù)據(jù),挖掘產(chǎn)量相關(guān)新基因。基于圖形泛基因組,共鑒定了6,604,898個單核苷酸多態(tài)性和42,879個結(jié)構(gòu)變異。通過對6個群體開展獨立GWAS分析,并進一步整合進行meta分析,共鑒定出156個與關(guān)鍵農(nóng)藝性狀相關(guān)的遺傳位點,其中116個僅能通過meta-GWAS鑒定得到,顯著提高了QTL的檢測能力和遺傳力的解釋率。在此基礎(chǔ)上,成功挖掘了水稻粒寬和粒長性狀相關(guān)的新基因GW10.2和GL11,并通過分子遺傳學實驗進行了功能驗證。本研究為水稻種質(zhì)資源的高效深入挖掘和遺傳改良提供了新的思路和工具,也為水稻高產(chǎn)分子設(shè)計育種提供了寶貴的基因資源。


圖1 基于meta-GWAS高效深入挖掘水稻產(chǎn)量重要性狀相關(guān)基因


基因組所(大鵬灣實驗室)商連光研究員和崖州灣國家實驗室錢前院士為論文的共同通訊作者。基因組所(大鵬灣實驗室)和山西農(nóng)業(yè)大學聯(lián)培碩士研究生楊龍波、基因組所(大鵬灣實驗室)賀文闖副研究員、福建省農(nóng)業(yè)科學院朱義旺副研究員和已畢業(yè)博士生呂陽(現(xiàn)浙江省農(nóng)科院)為論文共同第一作者。感謝華南農(nóng)業(yè)大學的薛紅衛(wèi)教授為本研究提供的寶貴建議。該研究得到國家自然科學基金基礎(chǔ)科學中心、中國農(nóng)業(yè)科學院科技創(chuàng)新工程科學中心和中國農(nóng)科院青年創(chuàng)新專項資金資助。該工作得到了基因組所、中國水稻研究所和崖州灣科技城超級計算平臺的支持。


原文鏈接:https://www.nature.com/articles/s41467-025-58081-1


參考文獻:

1. Lianguang Shang, Xiaoxia Li, Huiying He, Qiaoling Yuan, Yanni Song, Zhaoran Wei, Hai Lin, Min Hu, Fengli Zhao, Chao Zhang, Yuhua Li, Hongsheng Gao, Tianyi Wang, Xiangpei Liu, Hong Zhang, Ya Zhang, Shuaimin Cao, Xiaoman Yu, Bintao Zhang, Yong Zhang, Yiqing Tan, Mao Qin, Cheng Ai, Yingxue Yang, Bin Zhang, Zhiqiang Hu, Hongru Wang, Yang Lv, Yuexing Wang, Jie Ma, Quan Wang, Hongwei Lu, Zhe Wu, Shanlin Liu, Zongyi Sun, Hongliang Zhang, Longbiao Guo, Zichao Li, Yongfeng Zhou, Jiayang Li, Zuofeng Zhu, Guosheng Xiong, Jue Ruan, Qian Qian. A super pan-genomic landscape of rice. Cell Research, 2022, 32(10): 878-896.

2. Xiaoxia Li, Xiaofan Dai, Huiying He, Yang Lv, Longbo Yang, Wenchuang He, Congcong Liu, Hua Wei, Xiangpei Liu, Qiaoling Yuan, Xianmeng Wang, Tianyi Wang, Bintao Zhang, Hong Zhang, Wu Chen, Yue Leng, Xiaoman Yu, Hongge Qian, Bin Zhang, Mingliang Guo, Zhipeng Zhang, Chuanlin Shi, Qianqian Zhang, Yan Cui, Qiang Xu, Xinglan Cao, Dandan Chen, Yongfeng Zhou, Qian Qian, Lianguang Shang. A pan-TE map highlights transposable elements underlying domestication and agronomic traits in Asian rice. National Science Review,2024, 11(6): nwae188.

3. Wenchuang He, Huiying He, Qiaoling Yuan, Hai Zhang, Xiaoxia Li, Tianyi Wang, Yingxue Yang,Longbo Yang, Yuting Yang, Xiangpei Liu, Hua Wei, Hong Zhang, Bin Zhang, Mingliang Guo, Yue Leng, Chuanlin Shi, Yang Lv, Wu Chen, Xianmeng Wang, Zhipeng Zhang, Bohui Yu, Bintao Zhang, Qiang Xu, Hongge Qian, Yongfeng Zhou, Shaokui Wang, Qian Qian, Lianguang Shang. Widespread inversions shape the genetic and phenotypic diversity in rice. Science Bulletin, 2024, 69(5): 593-596.

4. Huiying He, Yue Leng, Xinglan Cao, Yiwang Zhu, Xiaoxia Li, Qiaoling Yuan,Bin Zhang, Wenchuang He, Hua Wei, Xiangpei Liu, Qiang Xu, Mingliang Guo, Hong Zhang, Longbo Yang, Yang Lv, Xianmeng Wang, Chuanlin Shi, Zhipeng Zhang, Wu Chen, Bintao Zhang, Tianyi Wang, Xiaoman Yu, Hongge Qian, Qianqian Zhang, Xiaofan Dai, Congcong Liu, Yan Cui, Yuexing Wang, Xiaoming Zheng, Guosheng Xiong, Yongfeng Zhou, Qian Qian*, Lianguang Shang*. The pan-tandem repeat map highlights multiallelic variants underlying gene expression and agronomic traits in rice. Nature Communications, 2024, 15(1):7291.

5. Yang Lv, Congcong Liu, Xiaoxia Li, Yueying Wang, Huiying He, Wenchuang He, Wu Chen, Longbo Yang, Xiaofan Dai, Xinglan Cao, Xiaoman Yu, Jiajia Liu, Bin Zhang, Hua Wei, Hong Zhang, Hongge Qian, Chuanlin Shi, Yue Leng, Xiangpei Liu, Mingliang Guo, Xianmeng Wang, Zhipeng Zhang, Tianyi Wang, Bintao Zhang, Qiang Xu, Yan Cui, Qianqian Zhang, Qiaoling Yuan, Noushin Jahan, Jie Ma, Xiaoming Zheng, Yongfeng Zhou, Qian Qian, Longbiao Guo, Lianguang Shang. A centromere map based on super pan-genome highlights the structure and function of rice centromeres. Journal of Integrative Plant Biology, 2024, 66(2): 196-207.

6. Lianguang Shang, Wenchuang He, Tianyi Wang, Yingxue Yang, Qiang Xu, Xianjia Zhao, Longbo Yang, Hong Zhang, Xiaoxia Li, Yang Lv, Wu Chen, Shuo Cao, Xianmeng Wang, Bin Zhang, Xiangpei Liu, Xiaoman Yu, Huiying He, Hua Wei, Yue Leng, Chuanlin Shi, Mingliang Guo, Zhipeng Zhang, Bintao Zhang, Qiaoling Yuan, Hongge Qian, Xinglan Cao, Yan Cui, Qianqian Zhang, Xiaofan Dai, Congcong Liu, Longbiao Guo, Yongfeng Zhou, Xiaoming Zheng, Jue Ruan, Zhukuan Cheng, Weihua Pan, Qian Qian. A complete assembly of the rice Nipponbare reference genome. Molecular Plant, 2023, 16:1232-1236.

7. Tianyi Wang, Wenchuang He, Xiaoxia Li, Chao Zhang, Huiying He, Qiaoling Yuan, Bin Zhang, Hong Zhang, Yue Leng, Hua Wei, Qiang Xu, Chuanlin Shi, Xiangpei Liu, Mingliang Guo, Xianmeng Wang, Wu Chen, Zhipeng Zhang, Longbo Yang, Yang Lv, Hongge Qian, Bintao Zhang, Xiaoman Yu, Congcong Liu, Xinglan Cao, Yan Cui, Qianqian Zhang, Xiaofan Dai, Longbiao Guo, Yuexing Wang, Yongfeng Zhou, Jue Ruan, Qian Qian*, Lianguang Shang*. A rice variation map derived from 10548 rice accessions reveals the importance of rare variants. Nucleic Acids Research, 2023, 51(20):10924-10933

TOP TOP