蜜桃传播传媒|欧美精品久久久久久久一区二区|91干炮视频|国产高清自拍一区|麻豆映画在线观看视频传媒www|巨乳美乳影院|日日干夜夜拍|177.sk 163.sk黑料不打烊|小视频福利|91爱看视频,广州爱豆文化传媒,人人爱人人看,91传媒制片厂苹果下载

MENU

新聞中心

當(dāng)前位置: 首頁» 新聞中心» 科研進(jìn)展

National Science Review | 基因組所發(fā)現(xiàn)水稻耐鹽關(guān)鍵新基因

2024-02-08 12:01:00來源:

【字體:

  


近日,中國農(nóng)業(yè)科學(xué)院深圳農(nóng)業(yè)基因組研究所(嶺南現(xiàn)代農(nóng)業(yè)科學(xué)與技術(shù)廣東省實(shí)驗(yàn)室深圳分中心)聯(lián)合崖州灣國家實(shí)驗(yàn)室,、山東省農(nóng)業(yè)科學(xué)院濕地農(nóng)業(yè)與生態(tài)研究所,、中國水稻研究所等單位在《國家科學(xué)評(píng)論(National Science Review)》(IF=20.6)上在線發(fā)表了題為“Uncovering key salt-tolerant regulators through a combined eQTL and GWAS analysis using the super pan-genome in rice”的研究論文,。研究繪制了水稻超級(jí)泛基因組群體在鹽脅迫下的表達(dá)譜,,并成功挖掘了新的水稻耐鹽關(guān)鍵優(yōu)異基因STG5,該研究對(duì)水稻耐鹽育種改良具有重要意義,。



鹽堿地分布遍布全球30多個(gè)國家,,面積約為9.5438億公頃,其中我國鹽堿地面積約9,913萬公頃,,位于世界第三,,也是我國耕地重要的后備資源。喚醒這片“沉睡”土地,,是當(dāng)下亟需解決的“卡脖子”問題之一,。鹽脅迫會(huì)對(duì)水稻生長發(fā)育的各個(gè)階段造成不同程度的危害,進(jìn)而導(dǎo)致水稻產(chǎn)量降低,。耐鹽水稻的選育是鹽堿地的開發(fā)利用和耕地改良保護(hù)的重要舉措,,也是提高水稻產(chǎn)量的有效途徑。因此,,深入對(duì)水稻不同種質(zhì)資源進(jìn)行耐鹽性分析和鑒定,,并解析水稻耐鹽遺傳基礎(chǔ)和分子機(jī)制,可為耐鹽水稻品種的培育奠定良好的理論基礎(chǔ)和種質(zhì)材料,。


為了更好地利用和挖掘種質(zhì)資源中對(duì)育種有價(jià)值的優(yōu)異自然變異,。商連光團(tuán)隊(duì)前期完成了完整參考基因組的組裝(Shang et al., Molecular Plant, 2023)、水稻超級(jí)泛基因組的構(gòu)建和優(yōu)異等位基因快速挖掘的平臺(tái)搭建(Shang et al., Cell Research, 2022,;Lin et al., Journal of Integrative Plant Biology, 2023),、基因組復(fù)雜區(qū)域(Lv et al., Journal of Integrative Plant Biology, 2024)和復(fù)雜結(jié)構(gòu)變異(He et al., Science Bulletin,2023)的解析,。構(gòu)建的萬份水稻變異圖譜進(jìn)一步挖掘了水稻育種中具有重要價(jià)值的稀有自然變異,,為育種提供重要的優(yōu)異等位基因資源和稀有育種重要價(jià)值材料(Wang et al., Nucleic Acids Research, 2023)。這些工作為耐鹽優(yōu)異自然變異的挖掘和利用提供了全面豐富的遺傳變異信息和研究材料,。


基于前期的超級(jí)泛基因組工作,,為了挖掘耐鹽優(yōu)異基因和更好地育種應(yīng)用,本研究構(gòu)建了超級(jí)泛基因組群體在正常和鹽脅迫下的表達(dá)譜,,進(jìn)行表達(dá)數(shù)量性狀位點(diǎn)(expression quantitative trait loci,,eQTL)分析,鑒定到正常和鹽脅迫的eQTL位點(diǎn)分別有22,345,、27,160個(gè),,調(diào)控的eGene分別有7,787和9,361個(gè),而鹽脅迫下特有eGene有3,244個(gè)(圖1),。另一方面,,基于群體正常和鹽脅迫轉(zhuǎn)錄組,進(jìn)行了差異基因分析,在群體水平鑒定到DEGs有12,898個(gè),。該研究創(chuàng)建了多個(gè)鹽脅迫響應(yīng)的基因數(shù)據(jù)集,,為耐鹽基因的挖掘提供良好的基礎(chǔ)。此外,,該研究系統(tǒng)分析了群體苗期耐鹽性,,評(píng)價(jià)多個(gè)耐鹽性狀指標(biāo),結(jié)合超級(jí)泛基因組的全基因組關(guān)聯(lián)分析(Genome-Wide Association Study,,GWAS)挖掘了多個(gè)耐鹽新位點(diǎn),,同時(shí)包含了已知的QTL位點(diǎn)。該研究深入挖掘了5號(hào)染色體上的主效位點(diǎn)(qSTS5),,利用GWAS結(jié)合eQTL,、DEGs數(shù)據(jù)集進(jìn)行聯(lián)合分析,同時(shí)通過不同背景的染色體片段代換系連鎖分析確定候選基因范圍,,鎖定主效候選基因STG5,,研究表明該基因正向調(diào)控水稻鹽脅迫的響應(yīng)(圖2)。把該基因海稻86的優(yōu)異單倍型導(dǎo)入到日本晴品種中,,可以顯著提高日本晴品種的耐鹽性,,通過群體自然變異分析,STG5優(yōu)異單倍型和耐鹽主效基因SKC1 (Ren et al., 2005)的優(yōu)異單倍型具有累加效應(yīng),,二者優(yōu)異單倍型組合能夠更高幅度提高水稻耐鹽性,,表明該基因在耐鹽生物育種中具有較大的應(yīng)用潛力。此外,,通過生化實(shí)驗(yàn)分析,,發(fā)現(xiàn)STG5基因主要參與調(diào)控HKT (High-affinity K+ transporters)基因家族多個(gè)成員的表達(dá),進(jìn)而調(diào)控Na+/K+穩(wěn)態(tài)平衡,,賦予耐鹽水稻品種更強(qiáng)的耐鹽性,。


圖1 | 鹽脅迫下eQTL和eGene統(tǒng)計(jì)


通過GWAS和eQTL、DEGs聯(lián)合分析,,助力快速克隆耐鹽新基因,,該研究中的多個(gè)數(shù)據(jù)集可為耐鹽基因挖掘提供豐富的基因池,將對(duì)研發(fā)和培育水稻耐鹽新品種提供理論支持和相關(guān)遺傳資源,。目前,,該研究中的相關(guān)基因在調(diào)控水稻耐鹽性方面的應(yīng)用已經(jīng)申請了國家專利。


圖2 | 耐鹽主效位點(diǎn)qSTS5基因克隆和功能驗(yàn)證


中國農(nóng)業(yè)科學(xué)院深圳農(nóng)業(yè)基因組研究所商連光研究員,、崖州灣國家實(shí)驗(yàn)室錢前院士和山東省農(nóng)業(yè)科學(xué)院濕地農(nóng)業(yè)與生態(tài)研究所謝先芝研究員為論文的共同通訊作者,。基因組所博士后魏華,、汪賢猛,、張志鵬和在讀研究生楊龍波,、張纖纖為論文共同第一作者,。該研究得到國家自然科學(xué)基金基礎(chǔ)科學(xué)中心,、廣東省自然科學(xué)基金杰出青年基金、中國農(nóng)科院青年創(chuàng)新專項(xiàng)以及中國博士后基金和深圳市科技創(chuàng)新人才項(xiàng)目資金資助,。


商連光團(tuán)隊(duì)介紹

長期從事全球野生稻及栽培水稻種質(zhì)資源的收集和優(yōu)異種質(zhì)資源創(chuàng)制,、并利用水稻群體泛基因組、轉(zhuǎn)錄組,、表型組等多組學(xué)大數(shù)據(jù)整合挖掘野生稻和栽培水稻具有育種重要價(jià)值的耐鹽等抗逆性狀和產(chǎn)量性狀優(yōu)異等位基因,,數(shù)據(jù)庫構(gòu)建及大數(shù)據(jù)智慧育種等前沿研究。近年來以第一作者或通訊作者(含共同)在Cell Research(2022,,封面文章),、Molecular Plant (2020,2021,,2023),、Nucleic Acids Research (2023)、National Science Review(2024),、Science Bulletin(2023,,封面文章)、Trends in Plant Science(2022),、Plant Biotechnology Journal (2021,,2024)、New Phytologist(2020),、Journal of Integrative Plant Biology(2023,,2024)、Plant Physiology(2023)等刊物上發(fā)表系列高水平SCI論文,。


原文鏈接:https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwae043/7601401


參考文獻(xiàn):

1. ZhongHai Ren, JiPing Gao, LeGong Li, XiuLing Cai, Wei Huang, DaiYin Chao, Mei-Zhen Zhu, ZongYang Wang, Sheng Luan & Hong-Xuan Lin. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2015, 37: 1141–1146.

2.Lianguang Shang, Xiaoxia Li, Huiying He, Qiaoling Yuan, Yanni Song, Zhaoran Wei, Hai Lin, Min Hu, Fengli Zhao, Chao Zhang, Yuhua Li, Hongsheng Gao, Tianyi Wang, Xiangpei Liu, Hong Zhang, Ya Zhang, Shuaimin Cao, Xiaoman Yu, Bintao Zhang, Yong Zhang, Yiqing Tan, Mao Qin, Cheng Ai, Yingxue Yang, Bin Zhang, Zhiqiang Hu, Hongru Wang, Yang Lv, Yuexing Wang, Jie Ma, Quan Wang, Hongwei Lu, Zhe Wu, Shanlin Liu, Zongyi Sun, Hongliang Zhang, Longbiao Guo, Zichao Li, Yongfeng Zhou, Jiayang Li, Zuofeng Zhu, Guosheng Xiong, Jue Ruan, Qian Qian. A super pan-genomic landscape of rice. Cell Research, 2022, 32(10):878-896.

3.Lianguang Shang, Wenchuang He, Tianyi Wang, Yingxue Yang, Qiang Xu, Xianjia Zhao, Longbo Yang, Hong Zhang, Xiaoxia Li, Yang Lv, Wu Chen, Shuo Cao, Xianmeng Wang, Bin Zhang, Xiangpei Liu, Xiaoman Yu, Huiying He, Hua Wei, Yue Leng, Chuanlin Shi, Mingliang Guo, Zhipeng Zhang, Bintao Zhang, Qiaoling Yuan, Hongge Qian, Xinglan Cao, Yan Cui, Qianqian Zhang, Xiaofan Dai, Congcong Liu, Longbiao Guo, Yongfeng Zhou, Xiaoming Zheng, Jue Ruan, Zhukuan Cheng, Weihua Pan, Qian Qian. A complete assembly of the rice Nipponbare reference genome. Molecular Plant, 2023, 16:1232-1236.

4.Tianyi Wang, Wenchuang He, Xiaoxia Li, Chao Zhang, Huiying He, Qiaoling Yuan, Bin Zhang, Hong Zhang, Yue Leng, Hua Wei, Qiang Xu, Chuanlin Shi, Xiangpei Liu, Mingliang Guo, Xianmeng Wang, Wu Chen, Zhipeng Zhang, Longbo Yang, Yang Lv, Hongge Qian, Bintao Zhang, Xiaoman Yu, Congcong Liu, Xinglan Cao, Yan Cui, Qianqian Zhang, Xiaofan Dai, Longbiao Guo, Yuexing Wang, Yongfeng Zhou, Jue Ruan, Qian Qian, Lianguang Shang. A rice variation map derived from 10 548 rice accessions reveals the importance of rare variants. Nucleic Acids Research, 2023, 51(20): 10924-10933.

5.Wenchuang He, Huiying He, Qiaoling Yuan, Hai Zhang, Xiaoxia Li, Tianyi Wang, Yingxue Yang,,Longbo Yang, Yuting Yang, Xiangpei Liu, Hua Wei, Hong Zhang, Bin Zhang, Mingliang Guo, Yue Leng, Chuanlin Shi, Yang Lv, Wu Chen, Xianmeng Wang, Zhipeng Zhang, Bohui Yu, Bintao Zhang, Qiang Xu, Hongge Qian, Yongfeng Zhou, Shaokui Wang, Qian Qian, Lianguang Shang. Widespread inversions shape the genetic and phenotypic diversity in rice. Science Bulletin, 2023, doi: 10.1016/j.scib.2023.12.048

6.Yang Lv, Congcong Liu, Xiaoxia Li, Yueying Wang, Huiying He, Wenchuang He, Wu Chen, Longbo Yang, Xiaofan Dai, Xinglan Cao, Xiaoman Yu, Jiajia Liu, Bin Zhang, Hua Wei, Hong Zhang, Hongge Qian, Chuanlin Shi, Yue Leng, Xiangpei Liu, Mingliang Guo, Xianmeng Wang, Zhipeng Zhang, Tianyi Wang, Bintao Zhang, Qiang Xu, Yan Cui, Qianqian Zhang, Qiaoling Yuan, Noushin Jahan, Jie Ma, Xiaoming Zheng, Yongfeng Zhou, Qian Qian, Longbiao Guo, Lianguang Shang. A centromere map based on super pan-genome highlights the structure and function of rice centromeres. Journal of Integrative Plant Biology, 2023. doi:10.1111/jipb.13607.

7.Yarong Lin, Yiwang Zhu, Yuchao Cui, Hongge Qian, Qiaoling Yuan, Rui Chen, Yan Lin, Jianmin Chen, Xishi Zhou, Chuanlin Shi, Huiying He, Taijiao Hu, Chenbo Gu, XiaomanYu, Xiying Zhu, Yuexing Wang, Qian Qian, Cuijun Zhang, Feng Wang, Lianguang Shang. Identification of natural allelic variation in TTL1 controlling thermotolerance and grain size by a rice super pan-genome. Journal of Integrative Plant Biology, 2023, 00:1-12. doi: 10.1111/jipb.13568.




TOP TOP