蜜桃传播传媒|欧美精品久久久久久久一区二区|91干炮视频|国产高清自拍一区|麻豆映画在线观看视频传媒www|巨乳美乳影院|日日干夜夜拍|177.sk 163.sk黑料不打烊|小视频福利|91爱看视频,广州爱豆文化传媒,人人爱人人看,91传媒制片厂苹果下载

MENU

新聞中心

當(dāng)前位置: 首頁» 新聞中心» 科研進(jìn)展

National Science Review | 基因組所商連光團(tuán)隊(duì)揭示轉(zhuǎn)座子在水稻馴化和育種性狀改良中的重要作用

2024-06-14 12:23:28來源:

【字體:

  


近日,中國農(nóng)業(yè)科學(xué)院深圳農(nóng)業(yè)基因組研究所(嶺南現(xiàn)代農(nóng)業(yè)科學(xué)與技術(shù)廣東省實(shí)驗(yàn)室深圳分中心)聯(lián)合崖州灣國家實(shí)驗(yàn)室,、沈陽農(nóng)業(yè)大學(xué)等單位在《國家科學(xué)評(píng)論(National Science Review)(IF=20.6)上在線發(fā)表了題為“A pan-TE map highlights transposable elements underlying domestication and agronomic traits in Asian rice”的研究論文,。研究基于全球野生稻和栽培稻核心種質(zhì)資源,,構(gòu)建了群體水平,、最全面和高精度的水稻泛轉(zhuǎn)座子變異圖譜,,全面評(píng)估了轉(zhuǎn)座子對(duì)水稻馴化和育種改良中的重要作用,,挖掘到多個(gè)與重要農(nóng)藝性狀相關(guān)的優(yōu)異自然變異位點(diǎn),,豐富了水稻育種的可用變異庫,對(duì)水稻全基因組設(shè)計(jì)育種及遺傳育種改良提供了重要資源,。



1950年Barbara Mclintock首次在玉米中發(fā)現(xiàn)轉(zhuǎn)座子(Transposable element,,轉(zhuǎn)座子),并由此獲得諾貝爾獎(jiǎng)(Mclintock,,Cold Spring Harbor Symposia on Quantitative Biology,,1951)。長期以來,,轉(zhuǎn)座子本身被認(rèn)為是垃圾DNA,,但現(xiàn)在它們被認(rèn)為是一類DNA中不同尋常的高度重復(fù)片段,不僅在生物體內(nèi)甚至生物體之間具有驚人的移動(dòng)能力,,也能影響基因,、創(chuàng)造新性狀、增加不同個(gè)體的獨(dú)特性,,更會(huì)在壓力條件下被激活,,并幫助生物體適應(yīng)復(fù)雜多變的自然環(huán)境。大量文獻(xiàn)表明,,基因組結(jié)構(gòu)變異在調(diào)控水稻農(nóng)藝性狀具有重要作用,,而水稻基因組中的結(jié)構(gòu)變異大多源自于轉(zhuǎn)座子。轉(zhuǎn)座子主要包含non-LTR(Long terminal Repeat, SINE和LINE)型逆轉(zhuǎn)座子,、LTR型逆轉(zhuǎn)座子(Copia,、Gypsy等)、TIR(terminal Inverted Repeat)型DNA轉(zhuǎn)座子(Stowaway MITE,、Tourist MITE,、DTC、DTA,、DTT,、DTM、DTH等)和Helitron型DNA轉(zhuǎn)座子(Wicker et al., Nature Reviews Genetics, 2007),。高度重復(fù)的轉(zhuǎn)座子序列為其本身的充分注釋和精確鑒定帶來了挑戰(zhàn),,極大地阻礙了轉(zhuǎn)座子變異對(duì)作物馴化和農(nóng)藝性狀的深度系統(tǒng)解析,。得益于測序技術(shù)的進(jìn)步,有機(jī)會(huì)從群體的層面上全面地研究轉(zhuǎn)座子的分布特征,,并揭示轉(zhuǎn)座子在水稻馴化和育種中的作用,。


為了獲得高質(zhì)量的泛轉(zhuǎn)座子變異圖譜,本研究利用247份全球水稻核心種質(zhì)資源高質(zhì)量基因組,,構(gòu)建了大規(guī)模群體的亞洲稻泛轉(zhuǎn)座子變異圖譜(圖1),,包含169,798個(gè)(647.9 Mb)衍生的轉(zhuǎn)座子變異,其中占比最多的是Gypsy,、Helitron和Copia家族,,也是迄今為止質(zhì)量最高的水稻群體水平泛轉(zhuǎn)座子變異圖譜,。


圖1. 泛轉(zhuǎn)座子變異圖譜構(gòu)建


利用該泛轉(zhuǎn)座子變異圖譜,,研究人員比較了普通野生稻與秈稻、普通野生稻與粳稻,、秈稻和粳稻之間的轉(zhuǎn)座子變異,,發(fā)現(xiàn)轉(zhuǎn)座子變異顯著富集在馴化和分化的選擇性區(qū)域內(nèi),表明轉(zhuǎn)座子參與了水稻馴化和分化,。進(jìn)一步分析,,發(fā)現(xiàn)在水稻馴化分化過程中,不同的轉(zhuǎn)座子家族富集也具有特異性,,例如幾乎所有的LTR,、MITE和Helitron都顯著富集在馴化和分化過程中,而SINE和LINE家族僅顯著富集在從普通野生稻到粳稻的馴化過程中(圖2),。同時(shí),,研究人員也鑒定到參與水稻馴化和分化過程的轉(zhuǎn)座子變異分別有3,935和2,108個(gè),并受到這些轉(zhuǎn)座子變異影響的候選基因分別有2,992和1,750個(gè)(圖2),,包括重要抽穗基因RFT1等,、分蘗基因RFL、D10等,、以及粒型基因GW2,、DAO、LG1等,。例如一個(gè)Tourist MITE插入到耐冷基因LIP19的啟動(dòng)子區(qū),,顯著影響了該基因的表達(dá)水平,功能分析和單倍型分析表明,,該Tourist MITE通過影響LIP19的表達(dá)量而調(diào)控水稻的耐冷表型,。


圖2. 轉(zhuǎn)座子變異在水稻馴化和分化中的重要作用


另外,基于該泛轉(zhuǎn)座子變異圖譜,,研究人員發(fā)現(xiàn)轉(zhuǎn)座子與鄰近的SNPs/InDels存在完全連鎖的比例較低,,揭示轉(zhuǎn)座子變異可以作為補(bǔ)充提升挖掘基因的潛力,。結(jié)合全基因組關(guān)聯(lián)分析和群體表達(dá)數(shù)量性狀位點(diǎn)(expression quantitative trait loci,eQTL)分析,,研究人員鑒定到多個(gè)與水稻農(nóng)藝性狀顯著相關(guān)的轉(zhuǎn)座子變異新位點(diǎn),,而這些新位點(diǎn)無法利用SNP數(shù)據(jù)鑒定,例如Gypsy插入顯著影響耐冷下水稻的結(jié)實(shí)率(圖3),。同時(shí),,研究人員利用SNP和轉(zhuǎn)座子的cis-eQTL分析鑒定到轉(zhuǎn)座子變異調(diào)控的基因3,868個(gè),其中轉(zhuǎn)座子比起SNP標(biāo)記特有調(diào)控的基因1,246個(gè)(圖3),,例如發(fā)現(xiàn)一個(gè)PILE TIR插入基因OsRbohB的啟動(dòng)子區(qū),,顯著影響了該基因的表達(dá)水平,進(jìn)一步顯著影響了水稻的千粒重,,這些結(jié)果得到了實(shí)驗(yàn)的驗(yàn)證,。這些新的轉(zhuǎn)座子變異位點(diǎn)有助于挖掘更多與重要農(nóng)藝性狀相關(guān)的優(yōu)異基因,為水稻基因組輔助育種提供了新靶點(diǎn),。


圖3. 轉(zhuǎn)座子變異影響水稻基因表達(dá)和農(nóng)藝性狀


中國農(nóng)業(yè)科學(xué)院深圳農(nóng)業(yè)基因組研究所商連光研究員,、崖州灣國家實(shí)驗(yàn)室錢前院士和基因組所周永鋒研究員為論文的共同通訊作者?;蚪M所在讀博士生李笑霞,、在讀博士生戴小凡、副研究員賀慧英,、在讀博士生呂陽和在讀碩士生楊龍波為論文共同第一作者,。該研究得到國家自然科學(xué)基金基礎(chǔ)科學(xué)中心、廣東省自然科學(xué)基金杰出青年基金,、中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程科學(xué)中心和中國農(nóng)科院青年創(chuàng)新專項(xiàng)資金資助,。該工作得到了基因組所、中國水稻所和崖州灣科技城超級(jí)計(jì)算平臺(tái)的支持,。


原文鏈接:https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwae188/7687832




商連光團(tuán)隊(duì)長期從事利用全世界野生稻和栽培稻種質(zhì)資源進(jìn)行優(yōu)異自然變異挖掘與利用和種質(zhì)創(chuàng)新工作,。團(tuán)隊(duì)前期為了更好地挖掘和利用水稻種質(zhì)資源中對(duì)育種有價(jià)值的優(yōu)異自然變異,完成了水稻日本晴完整參考基因組的組裝和高質(zhì)量注釋來提高對(duì)水稻自然變異的檢測準(zhǔn)確度(Shang et al., Molecular Plant, 2023),;基于全世界核心種質(zhì)群體捕獲稻屬的豐富遺傳多樣性的自然變異資源,,進(jìn)而構(gòu)建了水稻圖形超級(jí)泛基因組和高精度的結(jié)構(gòu)變異圖譜,大大提高了產(chǎn)量和耐鹽等性狀優(yōu)異等位基因挖掘的速度(Shang et al., Cell Research, 2022,;Lin et al., Journal of Integrative Plant Biology, 2023),,挖掘到的耐鹽關(guān)鍵等位基因STG5(Wei et al., National Science Review,2024)具有重要育種價(jià)值,,將該基因優(yōu)異單倍型導(dǎo)入到主栽品種中可以大大提高鹽堿地耐鹽性,,利用結(jié)構(gòu)變異和鹽脅迫下的表達(dá)譜成功挖掘到OsMADS56基因上1Kb的結(jié)構(gòu)變異影響耐鹽性狀(Cui et al., New Phytologist, 2024);基于水稻圖形超級(jí)泛基因組做參考解析了萬份規(guī)模的水稻群體變異組,,揭示了稀有自然變異在育種中的重要性(Wang et al., Nucleic Acids Research, 2023),;同時(shí)破譯了水稻基因組中最為復(fù)雜的著絲粒區(qū)域變異圖譜,,挖掘到復(fù)雜結(jié)構(gòu)變異控制水稻農(nóng)藝性狀的關(guān)鍵基因OsMAB(Lv et al., Journal of Integrative Plant Biology, 2024),揭示了倒位結(jié)構(gòu)變異(He et al., Science Bulletin,,2023)對(duì)水稻重要性狀的作用,。綜上,團(tuán)隊(duì)構(gòu)建全世界水稻核心種質(zhì)圖形超級(jí)泛基因組和高質(zhì)量結(jié)構(gòu)變異圖譜,,系統(tǒng)地解析大片段插入和缺失,、轉(zhuǎn)座子、倒位,、著絲粒,、稀有變異等變異對(duì)水稻農(nóng)藝性狀和耐鹽等性狀的調(diào)控分子機(jī)制,并成功用于水稻的種質(zhì)創(chuàng)新和育種,。


商連光課題組簡介: https://agis.caas.cn/kydw/kydwyjzx/zwjyzyjzx/94d48f75df6943cb9ecc5d97ffa79f7c.htm


參考文獻(xiàn):

1. Barbara Mclintock#*. Chromosome organization and genic expression. Cold Spring Harbor Symposia on Quantitative Biology. 488 1951; 16: 13-47. doi: 10.1101/sqb.1951.016.01.004.

2. Thomas Wicker#, Fran?ois Sabot, Aurélie Hua-Van, Jeffrey L Bennetzen, Pierre Capy, Boulos Chalhoub, Andrew Flavell, Philippe Leroy, Michele Morgante, Olivier Panaud, Etienne Paux, Phillip SanMiguel, Alan H Schulman*. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8(12):973-982. doi:10.1038/nrg2165.

3. Hua Wei#, Xianmeng Wang#, Zhipeng Zhang#, Longbo Yang#, Qianqian Zhang#, Yilin Li, Huiying He, Dandan Chen, Bin Zhang, Chongke Zheng, Yue Leng, Xinglan Cao, Yan Cui, Chuanlin Shi, Yifan Liu, Yang Lv, Jie Ma, Wenchuang He, Xiangpei Liu, Qiang Xu, Qiaoling Yuan, Xiaoman Yu, Tianyi Wang, Hongge Qian, Xiaoxia Li, Bintao Zhang, Hong Zhang, Wu Chen, Mingliang Guo, Xiaofan Dai, Yuexing Wang, Xiaoming Zheng, Longbiao Guo, Xianzhi Xie,* Qian Qian*, Lianguang Shang*, Uncovering key salt-tolerant regulators through a combined eQTL and GWAS analysis using the super pan-genome in rice, National Science Review, 2024, Feb 5;11(4):nwae043, https://doi.org/10.1093/nsr/nwae043.

4. Lianguang Shang#*, Xiaoxia Li#, Huiying He#, Qiaoling Yuan#, Yanni Song#, Zhaoran Wei#, Hai Lin#, Min Hu#, Fengli Zhao#, Chao Zhang, Yuhua Li, Hongsheng Gao, Tianyi Wang, Xiangpei Liu, Hong Zhang, Ya Zhang, Shuaimin Cao, Xiaoman Yu, Bintao Zhang, Yong Zhang, Yiqing Tan, Mao Qin, Cheng Ai, Yingxue Yang, Bin Zhang, Zhiqiang Hu, Hongru Wang, Yang Lv, Yuexing Wang, Jie Ma, Quan Wang, Hongwei Lu, Zhe Wu, Shanlin Liu, Zongyi Sun, Hongliang Zhang, Longbiao Guo, Zichao Li, Yongfeng Zhou, Jiayang Li, Zuofeng Zhu*, Guosheng Xiong*, Jue Ruan*, Qian Qian*. A super pan-genomic landscape of rice. Cell Research, 2022, 32(10):878-896.

5. Lianguang Shang#*, Wenchuang He#, Tianyi Wang#, Yingxue Yang#, Qiang Xu#, Xianjia Zhao#, Longbo Yang, Hong Zhang, Xiaoxia Li, Yang Lv, Wu Chen, Shuo Cao, Xianmeng Wang, Bin Zhang, Xiangpei Liu, Xiaoman Yu, Huiying He, Hua Wei, Yue Leng, Chuanlin Shi, Mingliang Guo, Zhipeng Zhang, Bintao Zhang, Qiaoling Yuan, Hongge Qian, Xinglan Cao, Yan Cui, Qianqian Zhang, Xiaofan Dai, Congcong Liu, Longbiao Guo, Yongfeng Zhou, Xiaoming Zheng, Jue Ruan, Zhukuan Cheng, Weihua Pan*, Qian Qian*. A complete assembly of the rice Nipponbare reference genome. Molecular Plant, 2023, 16:1232-1236.

6. Tianyi Wang#, Wenchuang He#, Xiaoxia Li#, Chao Zhang#, Huiying He, Qiaoling Yuan, Bin Zhang, Hong Zhang, Yue Leng, Hua Wei, Qiang Xu, Chuanlin Shi, Xiangpei Liu, Mingliang Guo, Xianmeng Wang, Wu Chen, Zhipeng Zhang, Longbo Yang, Yang Lv, Hongge Qian, Bintao Zhang, Xiaoman Yu, Congcong Liu, Xinglan Cao, Yan Cui, Qianqian Zhang, Xiaofan Dai, Longbiao Guo, Yuexing Wang, Yongfeng Zhou, Jue Ruan, Qian Qian*, Lianguang Shang*. A rice variation map derived from 10 548 rice accessions reveals the importance of rare variants. Nucleic Acids Research, 2023, 51(20): 10924-10933.

7. Wenchuang He#, Huiying He#, Qiaoling Yuan#, Hai Zhang#, Xiaoxia Li, Tianyi Wang, Yingxue Yang,,Longbo Yang, Yuting Yang, Xiangpei Liu, Hua Wei, Hong Zhang, Bin Zhang, Mingliang Guo, Yue Leng, Chuanlin Shi, Yang Lv, Wu Chen, Xianmeng Wang, Zhipeng Zhang, Bohui Yu, Bintao Zhang, Qiang Xu, Hongge Qian, Yongfeng Zhou, Shaokui Wang*, Qian Qian*, Lianguang Shang*. Widespread inversions shape the genetic and phenotypic diversity in rice. Science Bulletin, 2023,doi:10.1016/j.scib.2023.12.048.

8. Yang Lv#, Congcong Liu#, Xiaoxia Li#, Yueying Wang#, Huiying He, Wenchuang He, Wu Chen, Longbo Yang, Xiaofan Dai, Xinglan Cao, Xiaoman Yu, Jiajia Liu, Bin Zhang, Hua Wei, Hong Zhang, Hongge Qian, Chuanlin Shi, Yue Leng, Xiangpei Liu, Mingliang Guo, Xianmeng Wang, Zhipeng Zhang, Tianyi Wang, Bintao Zhang, Qiang Xu, Yan Cui, Qianqian Zhang, Qiaoling Yuan, Noushin Jahan, Jie Ma, Xiaoming Zheng, Yongfeng Zhou, Qian Qian*, Longbiao Guo*, Lianguang Shang*. A centromere map based on super pan-genome highlights the structure and function of rice centromeres. Journal of Integrative Plant Biology, 2023. doi:10.1111/jipb.13607.

9. Yarong Lin#, Yiwang Zhu#, Yuchao Cui#, Hongge Qian#, Qiaoling Yuan#, Rui Chen, Yan Lin, Jianmin Chen, Xishi Zhou, Chuanlin Shi, Huiying He, Taijiao Hu, Chenbo Gu, XiaomanYu, Xiying Zhu, Yuexing Wang, Qian Qian, Cuijun Zhang*, Feng Wang*, Lianguang Shang*. Identification of natural allelic variation in TTL1 controlling thermotolerance and grain size by a rice super pan-genome. Journal of Integrative Plant Biology, 2023, 00:1-12. doi: 10.1111/jipb.13568.

10. Yuchao Cui#, Yarong Lin#, Hua Wei#, Yuehan Pan#, Huiying He, Hongge Qian, Longbo Yang, Xinglan Cao, Zhipeng Zhang, Xiaosi Zeng, Tianyi Wang, Wenchuang He, Xiangpei Liu, Chuanlin Shi, Qiaoling Yuan, Xiaoman Yu, Liang Chen, Feng Wang, Yiwang Zhu*, Qian Qian*, Lianguang Shang*. Identification of salt tolerance-associated presence-absence variations in the OsMADS56 gene through the integration of DEGs dataset and eQTL analysis. New Phytologist, 2024. doi: 10.1111/nph.19887.




TOP TOP